MYO-INOSITOL SYNTHESIS IN GERMINATING SEEDLINGS

N. K. MATHESON and M. St. CLAIR

Department of Agricultural Chemistry, University of Sydney, NyS W. 2006, Australia

(Received 6 March 1970, in revised form 21 July 1970)

Abstract—The conversion of ¹⁴C p-glucose 6-phosphate to *myo*-mositol in wheat and bean seedlings has been examined. There was no incorporation of label in the early stages of germination, but ¹⁴C was incorporated at later stages of development.

THE BIOSYNTHESIS of myo-inositol in microorganisms, animals and plants 4.4 proceeds from D-glucose 6-phosphate via cyclization to myo-inositol. Cell-free extracts, which synthesize myo-inositol from D-glucose 6-phosphate have been prepared from Sinapis alba and Phaseolus vulgaris, both 4 weeks old, and from ripening rice grains. In intact plants, the conversion of labelled D-glucose to myo-inositol has been observed in parsley and 2-week-old Sinapis alba. 5.6 However, preliminary experiments with germinating wheat, 3 days after imbibition suggested that there was negligible conversion of D-glucose to free myo-inositol or lipid bound myo-inositol.

In the present communication, these observations have been extended using both wheat and bean seedlings of various ages. Uniformly labelled D-glucose 6-phosphate was fed to beans at 3, 8, 15 and 22 days after imbibition and also to etiolated beans at 11 days and to wheat at 3, 7 and 28 days. Non-phytate *myo*-inositol was isolated and purified by paper chromatography prior to scintillation counting.

As shown in Table 1, there was substantial uptake of 14 C by beans at all stages and this uptake was lower in older plants. At 3 days, intact seedlings were used whereas at later stages plants with cut stems were fed. There was uptake by both methods. Three-day-old plants respired a higher proportion of absorbed 14 C (21% compared with 4-6%), but there was utilization in respiration at all stages. No label could be detected in the non-phytate myo-inositol of 3-day-old plants: the limit of detection was 0.04 m μ c. The glucose 6-phosphate may have been partly or wholly hydrolysed to D-glucose before utilization. At later stages of growth in the light, label was detected in myo-inositol. Dark grown plants at 11 days showed no incorporation into myo-inositol. These also showed a higher proportion of conversion of absorbed 14 C glucose 6-phosphate into 14 CO₂ (19%) than light grown plants of similar age. Intact wheat at 3 days (Table 2) showed a higher uptake of labelled

- ¹ I. W. CHEN and F C. CHARALAMPOUS, J. Biol Chem 240, 3507 (1965).
- ² F. EISENBERG and A. H BOLDEN, Biochem Biophys Res Commun. 21, 100 (1965).
- ³ H. Ruis, E. Molinari and O. Hoffmann-Ostenhof, Hoppe-Seyler's Z. Physiol. Chem. 348, 1705 (1967).
- ⁴ F. A. Loewus and S Kelly, Biochem Biophys. Res. Commun. 7, 204 (1962)
- ⁵ H. KINDL and O. HOFFMANN-OSTENHOF, Monatsch Chem 95, 548 (1964).
- ⁶ H. KINDL, R. SCHOLDA and O HOFFMANN-OSTENHOF, Angew. Chem 5, 165 (1966).
- ⁷ H Kurasawa, T Hayakawa and S. Motoda, Agri Biol Chem. 31, 382 (1967).
- ⁸ N K Matheson and S. Strother, Phytochem 8, 1349 (1969).

TABLE 1	INCORPORATION	OF 14	⁴C from	D-GLUCOSE	¹⁴ C(U)-6-PHOSPHATE	INTO	myo-INOSITOL	IN	BEAN
SEEDLINGS									

Age of plants (days)	Amount of D-G- 14 C(U)-6-P applied (μc)	Amount of D-G-14C(U)-6-P taken up in 24 hr (μc)	Amount of 14C respired (µc)	Amount of 14C converted to myo-inositol (mµc)	Non- phytate myo-mositol (mg/g dry wt)	Specific activity of myo-inositol (mµc/mg)
3	2,95	2 15	0 45	n s *	1 8	n s *
8	3 90	1 93	0 13	7 1	47	17
15	2 95	0 81	0 03	44	13 3	2 1
22	2 95	1 43	0 09	8 3	12 7	2 2
11 (etiolated)	3 00	1 41	0 26	ns*	2 3	n s.*

^{*} Not significant.

glucose 6-phosphate than did older plants with cut stems and again showed a higher conversion to ¹⁴CO₂, but there was no incorporation of ¹⁴C into non-phytate myo-inositol. In separate experiments with three day-old seedlings grown completely in the dark the same result was found. Wheat plants at 7 and 28 days did incorporate label into myo-inositol.

Table 2 Incorporation of $^{14}\mathrm{C}$ from D-glucose $^{14}\mathrm{C(U)}$ -6-phosphate into myo-inositol in wheat seedlings

Age of plants (days)	Amount of D-G-14C(U)-6-P applied (μc)	Amount of D-G-14C(U)-6-P taken up (μc)	Amount of 14C respired (µc)	Amount of 14C converted to myo-inositol (mµc)	Non- phytate myo-mositol (mg/g dry wt)	Specific activity of myo-inositol (mµc/mg)	
3	3 0	2 80	1 21	n s.*	0 45	n 8 *	
7	30	2 55	0.45	02	0.58	0•4	
28	2 95	1-19	0 07	08	0 84	19	

^{*} Not significant

These findings confirm the preliminary results previously obtained, that young wheat seedlings do not convert glucose to *myo*-mositol⁸ and extend the observations to beans. Conversion was observed in older plants, in agreement with other data.³⁻⁶

The results suggest that wheat and bean seedlings, in the initial stages of germination, cannot convert D-glucose 6-phosphate to myo-inositol. If complete hydrolysis of ¹⁴C D-glucose 6-phosphate to ¹⁴C D-glucose by phosphatase took place then it would be D-glucose that cannot be converted to myo-inositol. Since some of the label appears as ¹⁴CO₂, either glucose 6-phosphate is not completely hydrolysed or hexokinase is operating. Therefore the block to the synthesis of myo-inositol is either the lack of D-glucose 6-phosphate cyclase (or myo-inositol phosphate phosphatase) or that it does not operate.

D-Glucose 6-phosphate serves as a substrate for four enzymes (Fig. 1), phosphohexoisomerase, phosphoglucomutase, phosphoglucodehydrogenase and phosphoglucocyclase.

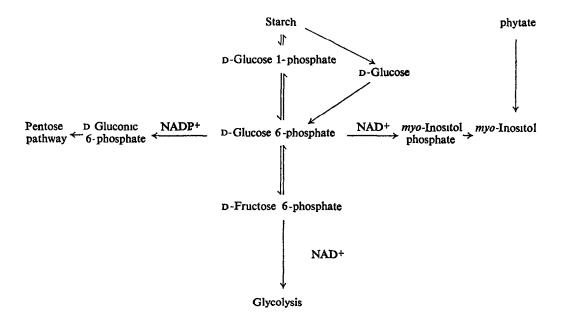


FIG 1. UTILIZATION OF D-GLUCOSE 6-PHOSPHATE AND THE ORIGIN OF myo-INOSITOL.

One of these, the cyclase, has a co-factor requirement for NAD⁺³ for which it may compete with glycolysis. One interpretation of these results is that germinating seeds utilize stored phytate (Fig. 1) as a source of *myo*-inositol, instead of using the pathway from D-glucose 6-phosphate (or D-glucose), and this allows the maximum quantity of D-glucose 6-phosphate (or D-glucose) to be used for glycolysis in the early stages of high growth rate. The lack of conversion into *myo*-inositol in etiolated 11-day bean seedlings, when the proportion of glucose respired is also high, indicates that this behaviour is not limited to the period immediately after imbibition.

EXPERIMENTAL

Plant Material

Seeds of Triticum vulgare var. Mendos and Phaseolus vulgaris var Redlands Pioneer (dwarf) were steeped in 0.5% NaClO solution for 10 min, rinsed and washed in water for 1 hr. They were grown in Perlite at 25° in a 13 hr photoperiod. After 7 days the plants were watered with Hoagland's solution. With 28-day-old wheat individual culms were used

Feeding of D-Glucose-14C(U)-6-phosphate

Seedlings were incubated at 25° for 24 hr in a solution of uniformly labelled D-glucose- 14 C-6-phosphate (0.5 μ c/ml), 74 μ c/mg) and unlabelled D-glucose 6-phosphate (0.5 mg/ml). Dry weight of seedlings was determined from a parallel experiment without added label. Beans at 3 days (with the split testas removed) and wheat at 3 days were fed with the roots and portion of the cotyledon immersed. All the other samples were cut at ground level and the stem immersed. Respired CO₂ was collected in NaOH solution, precipitated as BaCO₃ and counted

Extraction of Free myo-Inositol and Lipid myo-Inositol from Seedlings

The method was a modification of that previously described. Seedlings were ground in 0.5 M HClO₄ in an all-glass Tenbroeck homogenizer (2-5 g seedling/40 ml acid) The homogenate was centrifuged

⁹ E F L. J ANET and T. M. REYNOLDS, Nature 174, 930 (1954).

(30,000 g, 30 min) and washed twice with 0 5 M HClO₄ (30 ml) and water (30 ml) The residual pellet was dried and extracted in a glass Tenbroeck homogenizer with CHCl₃-MeOH (1:1) (40 ml), centrifuged (30,000 g, 30 min) and washed with CHCl₃-MeOH $(2 \times 30 ml)$ The solvent was distilled under reduced pressure below 40° and the residue boiled for $40 \, hr$ in $6 \, M$ HCl The acid was removed by distillation under reduced pressure

The combined supernatants from the HClO₄ extraction were made 15 mM to EDTA and the pH adjusted to 7 with KOH. After 18 hr at 4°, the precipitate was removed by centrifugation (30,000 g, 30 min) and the supernatant deionized (1RA-400 and AG50W-X4). The solution was made 0.75 M to H₂SO₄, boiled for 5 hr, neutralized with solid BaCO₃ and the pH raised to 11 0 with 25% NaOH. The suspension was centrifuged (2000 g, 30 min) and the residue washed twice (2 × 100 ml). The supernatants were reduced in volume by distillation under reduced pressure and the residue combined with the acid hydrolysate from CHCl₃-MeOH extraction. The volume was made up to 10 ml and oxidized for 2 hr in the dark with 0.05 M I₂ solution (30 ml) in a 0.1 M phosphate buffer (pH 11.3) (50 ml). The solution was deionized and reduced in volume to 2-3 ml. The remaining H₂O was removed by freeze-drying and the residue dissolved in 100 μ l H₂O. After paper chromatographic purification (solvent acetone-H₂O, 17.3) activity was measured by liquid scintillation counting in 0.4% PPO, 0.005% POPOP in toluene. Paper squares cut parallel to developed *myo*-mositol standards were used.

For estimation of myo-inositol content, a suitable aliquot was chromatographed with myo-inositol (1 μ l-6 μ l of 0.5 mg/ml). With these amounts spot area was proportional to concentration. The AgNO₃ spray of Anet and Reynolds⁹ was modified to dip in both solutions Papers were fixed in 5% Na₂S₂O₃ solution.

Acknowledgements—This investigation was supported by the University of Sydney Research Grant. One of us (M. St. C) wishes to acknowledge the award of a Commonwealth of Australia Post-graduate Scholarship